skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Trinquet, Victor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nonlinear optical (NLO) crystals with superior properties are significant for advancing laser technologies and applications. Introducing rare earth metals to borates is a promising and effective way to modify the electronic structure of a crystal to improve its optical properties in the visible and ultraviolet range. In this work, we computationally discover inversion symmetry breaking in EuBa3(B3O6)3, which was previously identified as centric, and demonstrate noncentrosymmetry via synthesizing single crystals for the first time by the floating zone method. We determine the correct space group to beP6¯. The material has a large direct bandgap of 5.56 eV and is transparent down to 250 nm. The complete anisotropic linear and nonlinear optical properties were also investigated with ad11of ∼0.52 pm/V for optical second harmonic generation. Further, it is Type I and Type II phase matchable. This work suggests that rare earth metal borates are an excellent crystal family for exploring future deep ultraviolet (DUV) NLO crystals. It also highlights how first principles computations combined with experiments can be used to identify noncentrosymmetric materials that have been wrongly assigned to be centrosymmetric. 
    more » « less
  2. Abstract Strong coupling between polarization (P) and strain (ɛ) in ferroelectric complex oxides offers unique opportunities to dramatically tune their properties. Here colossal strain tuning of ferroelectricity in epitaxial KNbO3thin films grown by sub‐oxide molecular beam epitaxy is demonstrated. While bulk KNbO3exhibits three ferroelectric transitions and a Curie temperature (Tc) of ≈676 K, phase‐field modeling predicts that a biaxial strain of as little as −0.6% pushes itsTc> 975 K, its decomposition temperature in air, and for −1.4% strain, toTc> 1325 K, its melting point. Furthermore, a strain of −1.5% can stabilize a single phase throughout the entire temperature range of its stability. A combination of temperature‐dependent second harmonic generation measurements, synchrotron‐based X‐ray reciprocal space mapping, ferroelectric measurements, and transmission electron microscopy reveal a single tetragonal phase from 10 K to 975 K, an enhancement of ≈46% in the tetragonal phase remanent polarization (Pr), and a ≈200% enhancement in its optical second harmonic generation coefficients over bulk values. These properties in a lead‐free system, but with properties comparable or superior to lead‐based systems, make it an attractive candidate for applications ranging from high‐temperature ferroelectric memory to cryogenic temperature quantum computing. 
    more » « less
  3. Abstract Superior infrared nonlinear optical (NLO) crystals are in urgent demand in the development of lasers and optical technologies for communications and computing. The critical challenge is to find a crystal with large non‐resonant phase‐matchable NLO coefficients and high laser damage threshold (LDTs) simultaneously, which however scale inversely. This work reports such a material, MgSiP2,that exhibits a large second harmonic generation (SHG) coefficient ofd14≈d36= 89 ± 5 pm V−1at 1550 nm fundamental wavelength, surpassing the commercial NLO crystals AgGaS2, AgGaSe2, and ZnGeP2. First principles theory reveals the polarizability and geometric arrangement of the [SiP4] tetrahedral units as the origin of this large nonlinear response. Remarkably, it also exhibits a high LDT value of 684 GW cm−2, which is six times larger than ZnGeP2and three times larger than CdSiP2. It has a wide transparency window of 0.53–10.35 µm, allowing broadband tunability. Further, it is Type I and Type II phase‐matchable with large effective SHG coefficients ofdeff,I≈80.2 pm V−1anddeff,II≈73.4 pm V−1. The outstanding properties of MgSiP2make it a highly attractive candidate for optical frequency conversion in the infrared. 
    more » « less